Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Polymer semiconductors show unique combinations of mechanical and optoelectronic properties that strongly depend on their microstructure and morphology. Here, we have used a model pi-conjugated bithiophene repeat unit to incorporate optoelectronic functionality into an aliphatic polyamide backbone by solution-phase polycondensation. Intermolecular hydrogen bonding between the amide groups ensured stable short-range order in the form of lamellar crystalline domains in the resulting semiaromatic polyamides, which could be processed from the melt and exhibited structural and thermomechanical characteristics comparable with those of existing engineering polyamides. At the same time, however, pulse-radiolysis time-resolved microwave conductivity measurements indicated charge carrier mobilities that were an order of magnitude greater than previously observed in bithiophene-based materials. Our results hence provide a convincing demonstration of the potential of amide hydrogen bonding interactions for obtaining unique combinations of mechanical and optoelectronic properties in thermoplastic polymers.
François Maréchal, Véronique Michaud, Yves Leterrier, Harm-Anton Klok, Jeremy Luterbacher, Maxime Alexandre Clément Hedou, Adrien Julien Demongeot, Graham Reid Dick, Christèle Rayroud, Thibault Rambert
, ,