Publication

Motor improvement estimation and task adaptation for personalized robot-aided therapy: a feasibility study

Abstract

Background In the past years, robotic systems have become increasingly popular in upper limb rehabilitation. Nevertheless, clinical studies have so far not been able to confirm superior efficacy of robotic therapy over conventional methods. The personalization of robot-aided therapy according to the patients' individual motor deficits has been suggested as a pivotal step to improve the clinical outcome of such approaches. Methods Here, we present a model-based approach to personalize robot-aided rehabilitation therapy within training sessions. The proposed method combines the information from different motor performance measures recorded from the robot to continuously estimate patients' motor improvement for a series of point-to-point reaching movements in different directions. Additionally, it comprises a personalization routine to automatically adapt the rehabilitation training. We engineered our approach using an upper-limb exoskeleton. The implementation was tested with 17 healthy subjects, who underwent a motor-adaptation paradigm, and two subacute stroke patients, exhibiting different degrees of motor impairment, who participated in a pilot test undergoing rehabilitative motor training. Results The results of the exploratory study with healthy subjects showed that the participants divided into fast and slow adapters. The model was able to correctly estimate distinct motor improvement progressions between the two groups of participants while proposing individual training protocols. For the two pilot patients, an analysis of the selected motor performance measures showed that both patients were able to retain the improvements gained during training when reaching movements were reintroduced at a later stage. These results suggest that the automated training adaptation was appropriately timed and specifically tailored to the abilities of each individual. Conclusions The results of our exploratory study demonstrated the feasibility of the proposed model-based approach for the personalization of robot-aided rehabilitation therapy. The pilot test with two subacute stroke patients further supported our approach, while providing encouraging results for the applicability in clinical settings.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Robot
A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically. A robot can be guided by an external control device, or the control may be embedded within. Robots may be constructed to evoke human form, but most robots are task-performing machines, designed with an emphasis on stark functionality, rather than expressive aesthetics.
Robotics
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Domestic robot
A domestic robot is a type of service robot, an autonomous robot that is primarily used for household chores, but may also be used for education, entertainment or therapy. While most domestic robots are simplistic, some are connected to Wi-Fi home networks or smart environments and are autonomous to a high degree. There were an estimated 16.3 million service robots in 2018. People began to design robots for processing materials and construct products, especially during the Industrial Revolution in the period about 1760 to around 1840.
Show more
Related publications (40)

Participatory design of a social robot and robot-mediated storytelling activity to raise awareness of gender inequality among children

Barbara Bruno, Romain Maure

Gender inequality is a widespread problem in our society. It can manifest itself in many ways and contexts, and starting as early as primary school. While an increasing number of initiatives aim at tackling gender biases and inequalities, few of them are a ...
New York2023

Enhancing our understanding of human fine manipulation skills and advancing robot dexterity in grasping

Kunpeng Yao

From surgery to watchmaking, fine-manipulation skills highly rely on the dexterity afforded by both hands. Coordination is key to human dexterity. Specifically, humans need not only to govern the abundant intrinsic degrees of freedom (DOFs) to allocate con ...
EPFL2022

Personalized Body-Machine Interfaces for Advanced Human-Robot Interaction

Matteo Macchini

Robotic systems are becoming more and more pervasive in modern industrial, scientific and personal activities through recent years and will play a fundamental role in the future society. Despite their increasing level of automation, teleoperation is still ...
EPFL2021
Show more
Related MOOCs (13)
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
Show more