Publication

Assessing Cu2L2X4 dimeric moieties as ferromagnetic building blocks in double halide-bridged polymers (X = Cl-, Br- and L = benzamide). An experimental and computational study

2020
Journal paper
Abstract

Two isostructural double halide-bridged polymers, consisting of stacked Cu2L2X4 dimers, with L = benzamide (BA) and X = Cl- in CuClBA and X = Br- in CuBrBA, were synthesised. The experimental magnetic data of both compounds were recorded and it was found that the chi(m) data fitted a 1D alternating FM/AFM model. A computational First-Principles Bottom-Up computational study was conducted to understand the micro- and bulk magnetic properties. It was determined that a strong ferromagnetic (FM) interaction occurs within the Cu(2)BA(2)X(4) dimer, with an anti-ferromagnetic (AFM) interaction diagonally connecting Cu(2)BA(2)X(4) dimeric moieties. For CuClBA, a 1D alternating FM/AFM chain topology was found, whereas CuBrBA shows additional competing interactions within the 1D alternating FM/AFM chain. Strikingly, the magnetic topology for both compounds is different than that expected from crystal packing analyses. Tuning the weaker competing interactions within the double halide-bridged chains might be a good strategy to extend the bulk FM character of the compound. (C) 2020 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.