Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Rigid foldability allows an origami pattern to fold about crease lines without twisting or stretching component panels. It enables folding of rigid materials, facilitating the design of foldable structures. Recent study shows that rigid foldability is affected by the mountain-valley crease (M-V) assignment of an origami pattern. In this paper, we investigate the rigid foldability of the square-twist origami pattern with diverse M-V assignments by a kinematic method based on the motion transmission path. Four types of square-twist origami patterns are analyzed, among which two are found rigidly foldable, while the other two are not. The explicit kinematic equations of the rigid cases are derived based on the kinematic equivalence between the rigid origami pattern and the closed-loop network of spherical 4R linkages. We also convert a non-rigid pattern into a rigid one by introducing an extra crease. The kinematic analysis of the modified pattern reveals an interesting bifurcation behaviour. This work not only helps to deepen our understanding on the rigid foldability of origami patterns and its relationship with the M-V assignments, but also provides us an effective way to create more rigidly foldable origami patterns from non-rigid ones. (C) 2020 Elsevier Ltd. All rights reserved.
Kamiar Aminian, Farzin Dadashi, Benoît Mariani, Arash Atrsaei