Publication

Evaluation of time-frequency features as detectors of lack of balance due to tripping-like perturbations

Silvestro Micera
2019
Conference paper
Abstract

Unbalancing events during gait can end up in falls and, thus, injury. Detecting events that could bring to fall and consequently activating fall prevention systems before the impact may help to mitigate related injuries. However, there is uncertainty about signals and methods that could offer the best performance. In this paper we investigated a novel trip detection method based on time-frequency features to evaluate the performances of these features as trip detectors. Hip angles of eight healthy young subjects were recorded while performing unexpected tripping trials delivered during steady locomotion. Then the Short-Time Fourier Transform (STFT) of the hip angle was estimated. Median frequency, power, centroidal frequency as well as frequency dispersion were computed for each time sliced power spectrum. These features were used as input for a trip detection algorithm. We assessed detection time (Tdetect), specificity (Spec) and sensitivity (Sens) for each feature. Performances obtained with median frequencies over time(Tdetect 0.91 +/- 0.47 s; Sens 0.96) were better than those obtained using the hip angle signal in time domain (Tdetect 1.19 +/- 0.27 s; Sens 0.83). Other features did not show significant results. Thus, median frequency over time expected to achieve effective real-time event detection systems, with the aim of a future on-board application concerning detection and prevention measures.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.