Publication

Morphology and morphodynamics of braided rivers: an experimental investigation

Daniel Vito Papa
2020
EPFL thesis
Abstract

Braided rivers form some of the most fascinating fluvial patterns found on Earth. They are identifiable by their unique morphology of complex networks of intertwined channels that spread across wide floodplains. Detailed knowledge of their dynamics is needed to define proper river management strategies that can address both human needs (e.g. protection against floods, bank migration, etc.) and natural needs (e.g. the preservation of fauna and flora, river restoration, etc.).

Recently, the study of braided rivers has undergone significant progress. Developments in the areas of laboratory experiments, monitoring techniques and field surveys, in addition to new paradigms in the field of geosciences and mathematical modelling have greatly improved our understanding of braided rivers. However, many questions remain unanswered. Is it possible to predict the long-term evolution of a braided river under steady flow conditions? More fundamentally, where do the braided pattern emerge from? Does it grow out of an intrinsic flow instability? And, if this is the case, which one? The present work aims to fill two specific gaps in the current state of knowledge: the dynamics of braided river networks and the development of a morphodynamic model that uses a non-equilibrium bedload formula that can predict bedforms that ultimately produce braiding.

This thesis studied the dynamics of the braided networks experimentally. Two laboratory-scale experiments were performed from which we extracted and investigated the braided network's temporal evolution. A set of variables describing the network was determined -namely the number of nodes, the number of links and the network's total link length. These variables were shown to relate to the flow conditions. Moreover, the evolution of the braided network was described by identifying similar network configurations as modes. The modes' evolution was well captured by their probability. Using a Markov process, we were ultimately able to reproduce the probability of occurrence of those modes.

A morphodynamic model based on the shallow-water equations and a stochastic-based bedload transport formula was developed. Applying linear stability theory, we were able to obtain marginal stability curves that predicted the development of bedforms. Two types of bedforms were identified: two-dimensional bedforms (antidunes and dunes) and three-dimensional bedforms (bars). The results agreed well with the literature. The present work was the first morphodynamical model to predict the development of both dunes and bars within the same framework using shallow-water equations. Moreover, we were able to show, albeit qualitatively, the influence of particle diffusion-present in the bedload transport equation-in the development of bedforms.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Social network
A social network is a social structure made up of a set of social actors (such as individuals or organizations), sets of dyadic ties, and other social interactions between actors. The social network perspective provides a set of methods for analyzing the structure of whole social entities as well as a variety of theories explaining the patterns observed in these structures. The study of these structures uses social network analysis to identify local and global patterns, locate influential entities, and examine network dynamics.
Network theory
In mathematics, computer science and network science, network theory is a part of graph theory. It defines networks as graphs where the nodes or edges possess attributes. Network theory analyses these networks over the symmetric relations or asymmetric relations between their (discrete) components. Network theory has applications in many disciplines, including statistical physics, particle physics, computer science, electrical engineering, biology, archaeology, linguistics, economics, finance, operations research, climatology, ecology, public health, sociology, psychology, and neuroscience.
Complex network
In the context of network theory, a complex network is a graph (network) with non-trivial topological features—features that do not occur in simple networks such as lattices or random graphs but often occur in networks representing real systems. The study of complex networks is a young and active area of scientific research (since 2000) inspired largely by empirical findings of real-world networks such as computer networks, biological networks, technological networks, brain networks, climate networks and social networks.
Show more
Related publications (41)

The kinectome: A comprehensive kinematic map of human motion in health and disease

Enrico Amico, Antonella Romano, Emahnuel Troisi Lopez

Human voluntary movement stems from the coordinated activations in space and time of many musculoskeletal segments. However, the current methodological approaches to study human movement are still limited to the evaluation of the synergies among a few body ...
WILEY2022

Local Vulnerabilities and Global Robustness of Coupled Dynamical Systems on Complex Networks

Melvyn Sandy Tyloo

Coupled dynamical systems are omnipresent in everyday life. In general, interactions between individual elements composing the system are captured by complex networks. The latter greatly impact the way coupled systems are functioning and evolving in time. ...
EPFL2020

Local Tomography of Large Networks Under the Low-Observability Regime

Ali H. Sayed, Augusto José Rabelo Almeida Santos

This article studies the problem of reconstructing the topology of a network of interacting agents via observations of the state-evolution of the agents. We focus on the large-scale network setting with the additional constraint of partial observations, wh ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2020
Show more
Related MOOCs (14)
Fluid Mechanics
Ce cours de base est composé des sept premiers modules communs à deux cours bachelor, donnés à l’EPFL en génie mécanique et génie civil.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.