Publication

Multiple dehydrogenation reactions of negative ions in low pressure silane plasma chemistry

Abstract

Micro-particle formation in low pressure silane (SiH4) plasmas has been of technical interest and concern for at least 40 years. Negative ion plasma chemistry is a candidate for the initial nucleation, which has been extensively studied both experimentally and theoretically. Nevertheless, the nature and mechanisms of anion-neutral reactions remain uncertain in models of nucleation. In the pure silane, 0.1 mbar plasma of this work, silicon hydride anion mass spectra are interpreted in terms of iterative anion–silane reactions, involving release of one, or two, hydrogen molecules. Such 'multiple dehydrogenation' has been directly observed by Operti et al [2006 Rapid Commun. Mass Spectrom. 20 2696], where triple dehydrogenation also occurred. A statistical model, defined uniquely by a branching ratio of 68% for single hydrogenation, and 32% for double dehydrogenation, gives an accurate fit to the hydrogen distribution for all heavy silicon hydride anions (abbreviated here by 'silanions'), up to at least 800 atomic mass units. Most theoretical models of silanion-neutral nucleation consider dehydrogenation where no more than one H2 molecule is released. It is suggested that multiple dehydrogenation could improve the comparison of theory with experiments.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, and highly combustible. Hydrogen is the most abundant chemical substance in the universe, constituting roughly 75% of all normal matter. Stars such as the Sun are mainly composed of hydrogen in the plasma state. Most of the hydrogen on Earth exists in molecular forms such as water and organic compounds.
Molecule
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and biochemistry, the distinction from ions is dropped and molecule is often used when referring to polyatomic ions. A molecule may be homonuclear, that is, it consists of atoms of one chemical element, e.g. two atoms in the oxygen molecule (O2); or it may be heteronuclear, a chemical compound composed of more than one element, e.
Alkali metal
The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour.
Show more
Related publications (36)

Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates

Richard Gaal, Livia Eleonora Bove Kado, Umbertoluca Ranieri

Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H-2 molecule, while each large cage can be occupied by up to f ...
Aip Publishing2024

Using Complex Hydrides for Hydrogen Storage and Direct Borohydride Fuel Cells for Electricity Production

Youngdon Ko

Hydrogen storage and utilization are the technologies to achieve carbon-neutral energy systems with renewable energy sources. Among the various materials that have been investigated, complex hydrides are a material exhibiting high gravimetric hydrogen dens ...
EPFL2023

Quantification of hydrogen in nanostructured hydrogenated passivating contacts for silicon photovoltaics combining SIMS-APT-TEM: A multiscale correlative approach

Franz-Josef Haug, Aïcha Hessler-Wyser, Quentin Thomas Jeangros, Mario Joe Lehmann

Multiscale characterization of the hydrogenation process of silicon solar cell contacts based on c-Si/SiOx/ncSiCx(p) has been performed by combining dynamic secondary ion mass-spectrometry (D-SIMS), atom probe tomography (APT), and transmission electron mi ...
ELSEVIER2021
Show more
Related MOOCs (2)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.