Publication

Nature of native atomic defects in ZrTe5 and their impact on the low-energy electronic structure

Abstract

Over the past decades, investigations of the anomalous low-energy electronic properties of ZrTe5 have reached a wide array of conclusions. An open question is the growth method's impact on the stoichiometry of ZrTe5 samples, especially given the very small density of states near its chemical potential. Here we report on high-resolution scanning tunneling microscopy and spectroscopy measurements performed on samples grown via different methods. Using density functional theory calculations, we identify the most prevalent types of atomic defects on the surface of ZrTe5, namely, Te vacancies and intercalated Zr atoms. Finally, we precisely quantify their density and outline their role as ionized defects in the anomalous resistivity of this material.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.