Publication

Potential of Radio Telescopes as High-Frequency Gravitational Wave Detectors

Valerie Fiona Domcke
2021
Journal paper
Abstract

In the presence of magnetic fields, gravitational waves are converted into photons and vice versa. We demonstrate that this conversion leads to a distortion of the cosmic microwave background (CMB), which can serve as a detector for MHz to GHz gravitational wave sources active before reionization. The measurements of the radio telescope EDGES can be cast as a bound on the gravitational wave amplitude, h(c) < 10(-21) (10(-12)) at 78 MHz, for the strongest (weakest) cosmic magnetic fields allowed by current astrophysical and cosmological constraints. Similarly, the results of ARCADE 2 imply h(c) < 10(-24) (10(-14)) at 3-30 GHz. For the strongest magnetic fields, these constraints exceed current laboratory constraints by about 7 orders of magnitude. Future advances in 21 cm astronomy may conceivably push these bounds below the sensitivity of cosmological constraints on the total energy density of gravitational waves.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.