Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Supramolecular assemblies from organic dyes forming J-aggregates are known to exhibit narrowband photoluminescence with full-width at half maximum of approximate to 9 nm (260 cm(-1)). Applications of these high color purity emitters, however, are hampered by the rather low photoluminescence quantum yields reported for cyanine J-aggregates, even when formed in solution. Here, it is demonstrated that cyanine J-aggregates can reach an order of magnitude higher photoluminescence quantum yield (increase from 5% to 60%) in blend solutions of water and alkylamines at room temperature. By means of time-resolved photoluminescence studies, an increase in the exciton lifetime as a result of the suppression of non-radiative processes is shown. Small-angle neutron scattering studies suggest a necessary condition for the formation of such highly emissive J-aggregates: the presence of a sharp water/amine interface for J-aggregate assembly and the coexistence of nanoscale-sized water and amine domains to restrict the J-aggregate size and solubilize monomers, respectively.