Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Mechanical ventilation can damage the lungs, a condition called Ventilator-Induced Lung Injury (VILI). However, the mechanisms leading to VILI at the microscopic scale remain poorly understood. Here we investigated the within-tidal dynamics of cyclic recruitment/derecruitment (R/D) using synchrotron radiation phase-contrast imaging (PCI), and the relation between R/D and cell infiltration, in a model of Acute Respiratory Distress Syndrome in 6 anaesthetized and mechanically ventilated New-Zealand White rabbits. Dynamic PCI was performed at 22.6 mu m voxel size, under protective mechanical ventilation [tidal volume: 6 ml/kg; positive end-expiratory pressure (PEEP): 5 cmH(2)O]. Videos and quantitative maps of within-tidal R/D showed that injury propagated outwards from non-aerated regions towards adjacent regions where cyclic R/D was present. R/D of peripheral airspaces was both pressure and time-dependent, occurring throughout the respiratory cycle with significant scatter of opening/closing pressures. There was a significant association between R/D and regional lung cellular infiltration (p=0.04) suggesting that tidal R/D of the lung parenchyma may contribute to regional lung inflammation or capillary-alveolar barrier dysfunction and to the progression of lung injury. PEEP may not fully mitigate this phenomenon even at high levels. Ventilation strategies utilizing the time-dependence of R/D may be helpful in reducing R/D and associated injury.
Martin Jaggi, Mary-Anne Hartley, Juliane Dervaux, Tatjana Chavdarova, Daniel Mueller, Julien Niklas Heitmann, Daniel Hinjos García, Alexandre Perez