Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The seminal work of DiPerna and Lions (Invent Math 98(3):511-547, 1989) guarantees the existence and uniqueness of regular Lagrangian flows for Sobolev vector fields. The latter is a suitable selection of trajectories of the related ODE satisfying additional compressibility/semigroup properties. A long-standing open question is whether the uniqueness of the regular Lagrangian flow is a corollary of the uniqueness of the trajectory of the ODE for a.e. initial datum. Using Ambrosio's superposition principle, we relate the latter to the uniqueness of positive solutions of the continuity equation and we then provide a negative answer using tools introduced by Modena and Szekelyhidi in the recent groundbreaking work (Modena and Szekelyhidi in Ann PDE 4(2):38, 2018). On the opposite side, we introduce a new class of asymmetric Lusin-Lipschitz inequalities and use them to prove the uniqueness of positive solutions of the continuity equation in an integrability range which goes beyond the DiPerna-Lions theory.
Marco Picasso, Alexandre Caboussat, Alexandre Masserey, Julien Hess