Publication

Complementary Metasurfaces for Guiding Electromagnetic Wave

Mohammad Sajjad Mirmoosa
2021
Journal paper
Abstract

Metasurfaces can be employed for designing waveguides that confine the electromagnetic energy while they are open structures. In this communication, we introduce a new type of such waveguides, formed by two penetrable metasurfaces having complementary isotropic surface impedances. We theoretically study the guided modes supported by the proposed structure and discuss the corresponding dispersion properties. We show the results for different scenarios in which the surface impedances possess nonresonant or resonant characteristics, and the distance between the two metasurfaces changes from large values to the extreme limit of zero. We also derive and describe the general condition for existence of two modes with orthogonal polarizations having the same phase velocity. In the particular case in which the metasurfaces are complementary and the distance between them is not small, we indicate that such phenomenon occurs within a broad frequency range. This property can be promising for applications in leaky-wave antennas and field focusing.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.