Publication

Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel

Roland Logé, Cyril Cayron, Bo Xiao
2020
Journal paper
Abstract

G115 steel has gained a growing interesting recently for its use in next-generation ultra-supercritical power plant applications. Due to the high densities of dislocations and lath martensite boundaries in G115 steel, interactions between solutes and dislocations result in unique microstructural evolution during creep with the formation of dense Cu-rich precipitates (CRPs) and M(23)C(6 )carbides. Atom-probe tomography reveals that Mn is preferentially associated with CRPs, probably because the Mn atoms reduce the critical energy of nucleation. Solute-dragging and precipitate-pinning effects enhance the formation of dislocation network during earlier creep deformation. Compared with aged G115 steel, long-term creep deformation accelerates the coarsening of CRPs. The fast diffusion of solutes along dislocations, dislocation network walls, and lath boundaries significantly increases the CRP coarsening kinetics. Particle coarsening reduces the pinning strength, causing the dislocation density to decrease and the dislocation network to disappear during long creep stages. Our results enhance our understanding of CRP evolution in G115 steel during creep and provide a guide for the design of novel heat-resistant steels with excellent creep strength. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Creep (deformation)
In materials science, creep (sometimes called cold flow) is the tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increase as they near their melting point. The rate of deformation is a function of the material's properties, exposure time, exposure temperature and the applied structural load.
Stainless steel
Stainless steel, also known as inox or corrosion-resistant steel (CRES), is an alloy of iron that is resistant to rusting and corrosion. It contains at least 10.5% chromium and usually nickel, and may also contain other elements, such as carbon, to obtain the desired properties. Stainless steel's resistance to corrosion results from the chromium, which forms a passive film that can protect the material and self-heal in the presence of oxygen. The alloy's properties, such as luster and resistance to corrosion, are useful in many applications.
Superalloy
A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance. The crystal structure is typically face-centered cubic (FCC) austenitic. Examples of such alloys are Hastelloy, Inconel, Waspaloy, Rene alloys, Incoloy, MP98T, TMS alloys, and CMSX single crystal alloys.
Show more
Related publications (57)

Effect of Y2O3 dispersoids on microstructure and creep properties of Hastelloy X processed by laser powder-bed fusion

Christian Leinenbach

Laser powder bed fusion (LPBF) was used to consolidate powders of a Ni-Cr-Fe-Mo alloy (Hastelloy X) blended with 1 wt% Y2O3 nanometric powders. The nearly-dense, crack-free specimens, with and without oxide dispersion strengthening (ODS), exhibit high-aspe ...
ELSEVIER2022

APT/TEM characterization of the element segregation in ferritic/martensitic steels after irradiation in SINQ

Lijuan Cui

Ferritic /martensitic (FM) steels are among the most important materials in various nuclear applications. As radiation-induced segregation (RIS) is one of the major factors for embrittlement of nuclear materials, thereofre it is essential to study the RIS ...
EPFL2021

Probabilistic and deterministic full field approaches to simulate recrystallization in ODS steels

Roland Logé, Flore Villaret

Mechanical and functional properties of Oxide Dispersion Strengthened (ODS) ferritic/martensitic steels are strongly related to their microstructures. Thus, numerical modeling of microstructure evolution during ODS forming is of prime importance. In this w ...
ELSEVIER2020
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.