Publication

The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: N-body mock challenge for the quasar sample

Jean-Paul Richard Kneib
2020
Journal paper
Abstract

The growth rate and expansion history of the Universe can be measured from large galaxy redshift surveys using the Alcock-Paczynski effect. We validate the Redshift Space Distortion models used in the final analysis of the Sloan Digital Sky Survey (SDSS) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 quasar clustering sample, in configuration and Fourier space, using a series of halo occupation distribution mock catalogues generated using the OuterRim N-body simulation. We test three models on a series of non-blind mocks, in the OuterRim cosmology, and blind mocks, which have been rescaled to new cosmologies, and investigate the effects of redshift smearing and catastrophic redshifts. We find that for the non-blind mocks, the models are able to recover fs8 to within 3 per cent and alpha(parallel to) and alpha(perpendicular to) to within 1 per cent. The scatter in the measurements is larger for the blind mocks, due to the assumption of an incorrect fiducial cosmology. From this mock challenge, we find that all three models perform well, with similar systematic errors on f sigma(8), alpha(parallel to), and alpha(perpendicular to) at the level of sigma f sigma(8) = 0.013, sigma(alpha parallel to) = 0.012, and sigma(alpha perpendicular to) = 0.008. The systematic error on the combined consensus is sigma f sigma(8) = 0.011, sigma(a) = 0.008, and sa. = 0.005, which is used in the final DR16 analysis. For baryon acoustic oscillation fits in configuration and Fourier space, we take conservative systematic errors of sigma(alpha parallel to) = 0.010 and sigma(alpha perpendicular to) = 0.007.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (33)
Redshift survey
In astronomy, a redshift survey is a survey of a section of the sky to measure the redshift of astronomical objects: usually galaxies, but sometimes other objects such as galaxy clusters or quasars. Using Hubble's law, the redshift can be used to estimate the distance of an object from Earth. By combining redshift with angular position data, a redshift survey maps the 3D distribution of matter within a field of the sky. These observations are used to measure detailed statistical properties of the large-scale structure of the universe.
Hubble's law
Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible spectrum. Hubble's law is considered the first observational basis for the expansion of the universe, and today it serves as one of the pieces of evidence most often cited in support of the Big Bang model.
Redshift
In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in frequency and energy, is known as a negative redshift, or blueshift. The terms derive from the colours red and blue which form the extremes of the visible light spectrum.
Show more
Related publications (36)

XXXIV. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear

Frédéric Courbin, Georges Meylan, Gianluca Castignani, Maurizio Martinelli, Malte Tewes, Slobodan Ilic, Alessandro Pezzotta, Yi Wang, Richard Massey, Fabio Finelli, Marcello Farina

Context. The cosmological surveys that are planned for the current decade will provide us with unparalleled observations of the distribution of galaxies on cosmic scales, by means of which we can probe the underlying large-scale structure (LSS) of the Univ ...
Edp Sciences S A2024

Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument

Stewart Cole, Xin Chen, Jean-Paul Richard Kneib, Eduardo Sanchez, Zheng Zheng, Andrei Variu, Daniel Felipe Forero Sanchez, Hua Zhang, Sun Hee Kim, Cheng Zhao, Anand Stéphane Raichoor, David Schlegel, Jiangyan Yang, Ting Tan, Zhifeng Ding, Arjun Dey

The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a survey covering 14,000 deg(2) over 5 yr to constrain the cosmic expansion history through precise measurements of baryon acoustic oscillations (BAO). The scientific program for DESI ...
Iop Publishing Ltd2024

Strong and micro lensing in distant quasars

Eric Gérard Guy Paic

Most large galaxies contain Super Massive Black Holes at their centers, drawing matter nearby to form swirling accretion disks emitting electromagnetic radiation. These are Active Galactic Nuclei. The brightest quasars are the most luminous Universe object ...
EPFL2023
Show more
Related MOOCs (11)
The Radio Sky II: Observational Radio Astronomy
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Introduction to Astrophysics
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.