Publication

Silver oxide model surface improves computational simulation of surface-enhanced Raman spectroscopy on silver nanoparticles

Tzu-Heng Chen
2021
Journal paper
Abstract

Surface-enhanced Raman spectroscopy (SERS) coupled with density functional theory (DFT) computations can characterise the adsorption orientation of a molecule on a nanoparticle surface. When using DFT to simulate SERS on a silver surface, one typically employs an atom (Ag), ion (Ag+), or cluster (Ag-x or Ag-x(+)) as the model surface. Here, by examining the nucleobase 2,6-diaminopurine (2,6-DAP) and then generalising our strategy to three other molecules, we show that employing silver oxide (Ag2O) as the model surface can quantitatively improve the accuracy of simulated SERS.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.