Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Silver nanoparticles (Ag NPs) are widely used in consumer products especially because of their antimicrobial properties. However, this wide usage of Ag NPs is accompanied by their release into the environment where they will be rapidly transformed to other silver species - especially silver sulfide (Ag2S). In the present study, we synthesized Ag NPs and sulfidized them to obtain a core-shell system Ag@Ag2S NPs. Both types of particles form stable dispersions with hydrodynamic diameters of less than 100 nm when diluted in water, but tend to form micrometer-sized agglomerates in biological exposure media. Application of Ag and Ag@Ag2S NPs to rainbow trout intestinal cells (RTgutGC) resulted in a concentration-dependent cytotoxicity for both types of particles, as assessed by a three-endpoint assay for metabolic activity, membrane integrity and lysosomal integrity. The Ag NPs were shown to be slightly more toxic than the Ag@Ag2S NPs. Adding Ag or Ag@Ag2S NPs to RTgutGC cells, grown on a permeable membrane to mimic the intestinal barrier, revealed considerable accumulation of silver for both types of particles. Indeed, the cells significantly attenuated the NP translocation, allowing only a fraction of the metal to translocate across the intestinal epithelium. These findings support the notion that the intestine constitutes an important sink for Ag NPs and that, despite the reduced cytotoxicity of a sulfidized NP form, the particles can enter fish where they may constitute a long-term source for silver ion release and cytotoxicity.
Jürgen Brugger, Giovanni Boero, Xiao Sheng Zhang, Ya Wang
,