Publication

Evaluating measurement uncertainty in Brillouin distributed optical fibre sensors using image denoising

Abstract

In 2016, our research team proposed in an issue of Nature Communications1 the use of multidimensional signal processing, especially image denoising techniques, to improve the signal-to-noise ratio (SNR) of distributed optical fibre sensors. The benefits of the method were demonstrated for distributed Raman and Brillouin sensors, both proving a significant performance improvement. Here we show that, while the SNR enhancement for the case of Brillouin distributed sensing was correctly estimated in our publication1, an overestimation of the Brillouin frequency uncertainty reduction was reported as a result of the inadvertent use of a conventional methodology for performance evaluation. Based on a better understanding of the impact of image denoising applied to Brillouin distributed sensors, here we report a revised estimation of the Brillouin-frequency shift (BFS) uncertainty obtained after image denoising, verifying that although 2D image denoising can significantly improve the measurement SNR, this cannot be fully transferred to the overall Brillouin sensing performance. Based on novel findings and a deeper understanding of the method, and for the sake of clarity, we start by clearly stating the fundamental limitations and real benefits of image denoising applied to Brillouin distributed sensing, by partially reusing the analysis and conclusions drawn in ref. 2. In the following, the effects of 2D filtering in the 2 dimensions of the matrix containing the measured data (i.e. in the Brillouin-spatial domain along the fibre and in the Brillouin-frequency domain describing each local Brillouin gain spectrum) are separately addressed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Noise reduction
Noise reduction is the process of removing noise from a signal. Noise reduction techniques exist for audio and images. Noise reduction algorithms may distort the signal to some degree. Noise rejection is the ability of a circuit to isolate an undesired signal component from the desired signal component, as with common-mode rejection ratio. All signal processing devices, both analog and digital, have traits that make them susceptible to noise.
Signal-to-noise ratio
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. SNR is an important parameter that affects the performance and quality of systems that process or transmit signals, such as communication systems, audio systems, radar systems, imaging systems, and data acquisition systems.
Digital image processing
Digital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Show more
Related publications (42)

Optimizing Data Processing for Nanodiamond Based Relaxometry

Mayeul Sylvain Chipaux

The nitrogen-vacancy (NV) center in diamond is a powerful and versatile quantum sensor for diverse quantities. In particular, relaxometry (or T1), can be used to detect magnetic noise at the nanoscale. For experiments with single NV centers the analysis of ...
WILEY2023

GTC Follow-up Observations of Very Metal-poor Star Candidates from DESI

Pascale Jablonka, Arjun Dey

The observations from the Dark Energy Spectroscopic Instrument (DESI) will significantly increase the numbers of known extremely metal-poor stars by a factor of similar to 10, improving the sample statistics to study the early chemical evolution of the Mil ...
Bristol2023

Enhanced Signal-Associated Noise in a φ-OTDR System

Luc Thévenaz, Malak Mohamed Hossameldeen Omar Mohamed Galal, Suneetha Sebastian

Owing to their high sensitivity with respect to external measurands, Rayleigh-based distributed optical fiber sensors (DOFS) find their way into applications in many industrial and academic sectors. To further transcend the limit of these sensors in terms ...
2022
Show more
Related MOOCs (6)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.