Publication

Sondheimer oscillations as a probe of non-ohmic flow in WP2 crystals

Abstract

As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm's law. Depending on the length scales of momentum conserving (l(MC)) and relaxing (l(MR)) electron scattering, and the device size (d), current flows may shift from ohmic to ballistic to hydrodynamic regimes. So far, an in situ methodology to obtain these parameters within a micro/nanodevice is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain l(MR) even when l(MR) >> d. We extract l(MR) from the Sondheimer amplitude in WP2, at temperatures up to T similar to 40 K, a range most relevant for hydrodynamic transport phenomena. Our data on mu m-sized devices are in excellent agreement with experimental reports of the bulk l(MR) and confirm that WP2 can be microfabricated without degradation. These results conclusively establish Sondheimer oscillations as a quantitative probe of l(MR) in micro-devices.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.