Publication

Low-Rank Updates Of Matrix Functions Ii: Rational Krylov Methods

Abstract

This work develops novel rational Krylov methods for updating a large-scale matrix function f(A) when A is subject to low-rank modifications. It extends our previous work in this context on polynomial Krylov methods, for which we present a simplified convergence analysis. For the rational case, our convergence analysis is based on an exactness result that is connected to work by Bernstein and Van Loan on rank-one updates of rational matrix functions. We demonstrate the usefulness of the derived error bounds for guiding the choice of poles in the rational Krylov method for the exponential function and Markov functions. Low-rank updates of the matrix sign function require additional attention; we develop and analyze a combination of our methods with a squaring trick for this purpose. A curious connection between such updates and existing rational Krylov subspace methods for Sylvester matrix equations is pointed out.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.