Publication

Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models

Abstract

Immune checkpoint blockade (ICB) with PD-1 or PD-L1 antibodies has been approved for the treatment of nonsmall cell lung cancer (NSCLC). However, only a minority of patients respond, and sustained remissions are rare. Both chemotherapy and antiangiogenic drugs may improve the efficacy of ICB in mouse tumor models and patients with cancer. Here, we used genetically engineered mouse models of Kras(G12D/+);p53(-/-) NSCLC, including a mismatch repair-deficient variant (Kras(G12D/+);p53(-/-);Msh2(-/-)) with higher mutational burden, and longitudinal imaging to study tumor response and resistance to combinations of ICB, antiangiogenic therapy, and chemotherapy. Antiangiogenic blockade of vascular endothelial growth factor A and angiopoietin-2 markedly slowed progression of autochthonous lung tumors, but contrary to findings in other cancer types, addition of a PD-1 or PD-L1 antibody was not beneficial and even accelerated progression of a fraction of the tumors. We found that antiangiogenic treatment facilitated tumor infiltration by PD-1(+) regulatory T cells (T-regs), which were more efficiently targeted by the PD-1 antibody than CD8(+) T cells. Both tumor-associated macrophages (TAMs) of monocyte origin, which are colony-stimulating factor 1 receptor (CSF1R) dependent, and TAMs of alveolar origin, which are sensitive to cisplatin, contributed to establish a transforming growth factor-beta-rich tumor microenvironment that supported PD-1(+) T-regs. Dual TAM targeting with a combination of a CSF1R inhibitor and cisplatin abated T-regs, redirected the PD-1 antibody to CD8(+) T cells, and improved the efficacy of antiangiogenic immunotherapy, achieving regression of most tumors.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Cancer immunotherapy
Cancer immunotherapy (sometimes called immuno-oncology) is the stimulation of the immune system to treat cancer, improving on the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology. Cancer immunotherapy exploits the fact that cancer cells often have tumor antigens, molecules on their surface that can be detected by the antibody proteins of the immune system, binding to them.
Genetically modified animal
Genetically modified animals are animals that have been genetically modified for a variety of purposes including producing drugs, enhancing yields, increasing resistance to disease, etc. The vast majority of genetically modified animals are at the research stage while the number close to entering the market remains small. Genetic engineering techniquesThe process of genetically engineering mammals is a slow, tedious, and expensive process.
Genetically modified mouse
A genetically modified mouse or genetically engineered mouse model (GEMM) is a mouse (Mus musculus) that has had its genome altered through the use of genetic engineering techniques. Genetically modified mice are commonly used for research or as animal models of human diseases, and are also used for research on genes. Together with patient-derived xenografts (PDXs), GEMMs are the most common in vivo models in cancer research. Both approaches are considered complementary and may be used to recapitulate different aspects of disease.
Show more
Related publications (38)

Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy

Ali Ghasemi

Dendritic cells (DCs) are specialized myeloid cells with the ability to uptake, process, andpresent antigens to T lymphocytes. They also generate cytokine and chemokine gradients thatregulate immune cell trafficking, activation, and function. Monocyte-deri ...
EPFL2024

Mechanism of KRAS-driven T cell infiltration in colorectal cancer

Amber Dawn Bowler

Colorectal cancer is the second-leading cause of cancer death worldwide. Early-stage disease can be detected with preventative medical screening and is treatable with surgical resection. Sixty-percent of patients, however, are diagnosed with advanced-stage ...
EPFL2023

A PD-L1/EGFR bispecific antibody combines immune checkpoint blockade and direct anti-cancer action for an enhanced anti-tumor response

Jaume Bonet Martinez

Immune checkpoint blockade (ICB) with antibodies has shown durable clinical responses in a wide range of cancer types, but the overall response rate is still limited. Other effective therapeutic modalities to increase the ICB response rates are urgently ne ...
TAYLOR & FRANCIS INC2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.