Publication

CAFS: Cost-Aware Features Selection Method for Multimodal Stress Monitoring on Wearable Devices

Résumé

Objective: Today, stress monitoring on wearable devices is challenged by the tension between high-detection accuracy and battery lifetime driven by multimodal data acquisition and processing. Limited research has addressed the classification cost on multimodal wearable sensors, particularly when the features are cost-dependent. Thus, we design a Cost-Aware Feature Selection (CAFS) methodology that trades-off between prediction-power and energy-cost for multimodal stress monitoring. Methods: CAFS selects the most important features under different energy-constraints, which allows us to obtain energy-scalable stress monitoring models. We further propose a self-aware stress monitoring method that intelligently switches among the energy-scalable models, reducing energy consumption. Results: Using CAFS methodology on experimental data and simulation, we reduce the energy-cost of the stress model designed without energy constraints up to 94.37%. We obtain 90.98% and 95.74% as the best accuracy and confidence values, respectively , on unseen data, outperforming state-of-the-art studies. Analyzing our interpretable and energy-scalable models, we showed that simple models using only heart rate (HR) or skin conductance level (SCL), confidently predict acute stress for HR > 93.30BP M and non-stress for SCL < 6.42µS, but, outside these values, a multimodal model using respiration and pulse wave's features is needed for confident classification. Our self-aware acute stress monitoring proposal saves 10x energy and provides 88.72% of accuracy on unseen data. Conclusion: We propose a comprehensive solution for the cost-aware acute stress monitoring design addressing the problem of selecting an optimized feature subset considering their cost-dependency and cost-constraints. Significant: Our design framework enables long-term and confident acute stress monitoring on wearable devices.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.