Publication

Real-time Nonlinear MPC Strategy with Full Vehicle Validation for Autonomous Driving

Colin Neil Jones, Petr Listov, Jean Pierre Allamaa
2021
Report or working paper
Abstract

In this paper, we present the development and deployment of an embedded optimal control strategy for autonomous driving applications on a Ford Focus road vehicle. Non-linear model predictive control (NMPC) is designed and deployed on a system with hard real-time constraints. We show the properties of sequential quadratic programming (SQP) optimization solvers that are suitable for driving tasks. Importantly, the designed algorithms are validated based on a standard automotive development cycle: model-in-the-loop (MiL) with high fidelity vehicle dynamics, hardware-in-theloop (HiL) with vehicle actuation and embedded platform, and vehicle-hardware-in-the-loop (VeHiL) testing using a full vehicle. The autonomous driving environment contains both virtual simulation and physical proving ground tracks. Throughout the process, NMPC algorithms and optimal control problem (OCP) formulation are fine-tuned using a deployable C code via code generation compatible with the target embedded toolchains. Finally, the developed systems are applied to autonomous collision avoidance, trajectory tracking and lane change at high speed on city/highway and low speed at a parking environment.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.