Publication

Distributed Predictive Drone Swarms in Cluttered Environments

Abstract

Recent works in aerial robotics show that the self-organized and cohesive flight of swarms can emerge from the exchange of purely local information between neighboring agents. However, most of the current swarm models are not capable of flight in densely cluttered environments. Predictive models have the potential to incorporate safe collision avoidance capabilities and give the agents the ability to anticipate and synchronize their trajectories in real-time. Here, we propose a distributed predictive swarm model that generates self-organized, safe, and cohesive trajectories by solving an optimization problem in real-time. In simulation, we show that our method is scalable to large numbers of agents and suitable for deployment in different environments, specifically a forest and a funnel-like environment. Furthermore, our results show that the agents are capable of collision-free flight with noisy sensor measurements for a noise level of up to 70% of the magnitude of the agent safety distance. Real-world experiments with a swarm of up to 16 quadrotors in an indoor artificial environment validate our method. Supplementary Materials can be found at https://doi.org/10.5281/zenodo.5245214.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Swarm behaviour
Swarm behaviour, or swarming, is a collective behaviour exhibited by entities, particularly animals, of similar size which aggregate together, perhaps milling about the same spot or perhaps moving en masse or migrating in some direction. It is a highly interdisciplinary topic. As a term, swarming is applied particularly to insects, but can also be applied to any other entity or animal that exhibits swarm behaviour.
Swarm robotics
Swarm robotics is an approach to the coordination of multiple robots as a system which consist of large numbers of mostly simple physical robots. ′′In a robot swarm, the collective behavior of the robots results from local interactions between the robots and between the robots and the environment in which they act.′′ It is supposed that a desired collective behavior emerges from the interactions between the robots and interactions of robots with the environment.
Swarm intelligence
Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems. SI systems consist typically of a population of simple agents or boids interacting locally with one another and with their environment. The inspiration often comes from nature, especially biological systems.
Show more
Related publications (35)

Human-Robot Swarm Interaction: An Explorative Path to Foster Complex Systems Understanding

Hala Khodr

Order, regularities, and patterns are ubiquitous around us. A flock of birds maneuvering in the sky, the self-organization of social insects, a global pandemic or a traffic jam are examples of complex systems where the macroscopic patterns arise from the m ...
EPFL2023

Memory of Motion for Initializing Optimization in Robotics

Teguh Santoso Lembono

Many robotics problems are formulated as optimization problems. However, most optimization solvers in robotics are locally optimal and the performance depends a lot on the initial guess. For challenging problems, the solver will often get stuck at poor loc ...
EPFL2022

Model Predictive Control of Aerial Swarms

Enrica Soria

Aerial robot swarms can have a large socio-economic impact. They can perform time-critical missions faster than a single robot and access dangerous environments without compromising human safety. However, swarm deployment is often limited to free environme ...
EPFL2022
Show more
Related MOOCs (15)
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.