Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We describe a framework for analyzing probabilistic reachability and safety problems for discrete time stochastic hybrid systems within a dynamic games setting. In particular, we consider finite horizon zero-sum stochastic games in which a control has the objective of reaching a target set while avoiding an unsafe set in the hybrid state space, and a rational adversary has the opposing objective. We derive an algorithm for computing the maximal probability of achieving the control objective, subject to the worst-case adversary behavior. From this algorithm, sufficient conditions of optimality are also derived for the synthesis of optimal control policies and worst-case disturbance strategies. These results are then specialized to the safety problem, in which the control objective is to remain within a safe set. We illustrate our modeling framework and computational approach using both a tutorial example with jump Markov dynamics and a practical application in the domain of air traffic management.
Daniel Kuhn, Bahar Taskesen, Cagil Kocyigit
,