Publication

Mean-Covariance Robust Risk Measurement

Abstract

We introduce a universal framework for mean-covariance robust risk measurement and portfolio optimization. We model uncertainty in terms of the Gelbrich distance on the mean-covariance space, along with prior structural information about the population distribution. Our approach is related to the theory of optimal transport and exhibits superior statistical and computational properties than existing models. We find that, for a large class of risk measures, mean-covariance robust portfolio optimization boils down to the Markowitz model, subject to a regularization term given in closed form. This includes the finance standards, value-at-risk and conditional value-at-risk, and can be solved highly efficiently.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Entropic value at risk
In financial mathematics and stochastic optimization, the concept of risk measure is used to quantify the risk involved in a random outcome or risk position. Many risk measures have hitherto been proposed, each having certain characteristics. The entropic value at risk (EVaR) is a coherent risk measure introduced by Ahmadi-Javid, which is an upper bound for the value at risk (VaR) and the conditional value at risk (CVaR), obtained from the Chernoff inequality. The EVaR can also be represented by using the concept of relative entropy.
Value at risk
Value at risk (VaR) is a measure of the risk of loss of investment/Capital. It estimates how much a set of investments might lose (with a given probability), given normal market conditions, in a set time period such as a day. VaR is typically used by firms and regulators in the financial industry to gauge the amount of assets needed to cover possible losses. For a given portfolio, time horizon, and probability p, the p VaR can be defined informally as the maximum possible loss during that time after excluding all worse outcomes whose combined probability is at most p.
Risk measure
In financial mathematics, a risk measure is used to determine the amount of an asset or set of assets (traditionally currency) to be kept in reserve. The purpose of this reserve is to make the risks taken by financial institutions, such as banks and insurance companies, acceptable to the regulator. In recent years attention has turned towards convex and coherent risk measurement. A risk measure is defined as a mapping from a set of random variables to the real numbers. This set of random variables represents portfolio returns.
Show more
Related publications (54)

Portfolio Construction with Hierarchical Momentum

Urban Ulrych

This article presents a portfolio construction approach that combines the hierarchical clustering of a large asset universe with the stock price momentum. On one hand, investing in high-momentum stocks enhances returns by capturing the momentum premium. On ...
Pageant Media Ltd2024

Uncertainty-aware Flexibility Envelope Prediction in Buildings with Controller-agnostic Battery Models

Colin Neil Jones, Paul Scharnhorst, Rafael Eduardo Carrillo Rangel, Pierre-Jean Alet, Baptiste Schubnel

Buildings are a promising source of flexibility for the application of demand response. In this work, we introduce a novel battery model formulation to capture the state evolution of a single building. Being fully data-driven, the battery model identificat ...
IEEE2023

Greening the Swiss National Bank's Portfolio

Rüdiger Fahlenbrach, Eric Jondeau

Central banks are increasingly concerned about climate-related risks and want to ensure that the financial system is resilient to them. As they integrate these risks into financial stability monitoring, they also discuss how to apply environmental criteria ...
OXFORD UNIV PRESS2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.