Publication

Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand

Abstract

To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Energy policy of the United Kingdom
The energy policy of the United Kingdom refers to the United Kingdom's efforts towards reducing energy intensity, reducing energy poverty, and maintaining energy supply reliability. The United Kingdom has had success in this, though energy intensity remains high. There is an ambitious goal to reduce carbon dioxide emissions in future years, but it is unclear whether the programmes in place are sufficient to achieve this objective.
100% renewable energy
100% renewable energy means getting all energy from renewable resources. The endeavor to use 100% renewable energy for electricity, heating, cooling and transport is motivated by climate change, pollution and other environmental issues, as well as economic and energy security concerns. Shifting the total global primary energy supply to renewable sources requires a transition of the energy system, since most of today's energy is derived from non-renewable fossil fuels.
Energy transition
An energy transition (or energy system transformation) is a significant structural change in an energy system regarding supply and consumption. Currently, a transition to sustainable energy (mostly renewable energy) is underway to limit climate change. It is also called renewable energy transition. The current transition is driven by a recognition that global greenhouse-gas emissions must be drastically reduced. This process involves phasing-down fossil fuels and re-developing whole systems to operate on low carbon electricity.
Show more
Related publications (34)

Heat pumping and renewable energy integration for decarbonizing brewery industry and district heating

François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos

The energy integration of brewery plants and urban agglomerations has many benefits in terms of rational energy use and reduced environmental impact, especially during scenarios of uncertain supply chain and volatile market prices. In fact, the diversifica ...
2023

Heat pumping and renewable energy integration for decarbonizing brewery industry and district heating

François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos

The energy integration of brewery plants and urban agglomerations has many benefits in terms of rational energy use and reduced environmental impact, especially during scenarios of uncertain supply chain and volatile market prices. In fact, the diversifica ...
Elsevier2023

Leveraging industrial biorefineries for the energy transition

François Maréchal, Julia Granacher

Biorefineries hold the potential to provide products and energy carriers at reduced environmental impact compared to their fossil-based counterparts. Thus, they can contribute to the decarbonization of sectors in which electrification of demands is challen ...
London2023
Show more
Related MOOCs (7)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.