Publication

Optimal recovery of unsecured debt via interpretable reinforcement learning

Résumé

This paper addresses the issue of interpretability and auditability of reinforcement-learning agents employed in the recovery of unsecured consumer debt. To this end, we develop a deterministic policy-gradient method that allows for a natural integration of domain expertise into the learning procedure so as to encourage learning of consistent, and thus interpretable, policies. Domain knowledge can often be expressed in terms of policy monotonicity and/or convexity with respect to relevant state inputs. We augment the standard actor–critic policy approximator using a monotonically regularized loss function which integrates domain expertise into the learning. Our formulation overcomes the challenge of learning interpretable policies by constraining the search to policies satisfying structural-consistency properties. The resulting state-feedback control laws can be readily understood and implemented by human decision makers. This new domain-knowledge enhanced learning approach is applied to the problem of optimal debt recovery which features a controlled Hawkes process and an asynchronous action–feedback relationship.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Apprentissage par renforcement
En intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Apprentissage automatique
L'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Apprentissage
L’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Afficher plus
Publications associées (52)

It’s All Relative: Learning Interpretable Models for Scoring Subjective Bias in Documents from Pairwise Comparisons

Matthias Grossglauser, Aswin Suresh, Chi Hsuan Wu

We propose an interpretable model to score the subjective bias present in documents, based only on their textual content. Our model is trained on pairs of revisions of the same Wikipedia article, where one version is more biased than the other. Although pr ...
2024

Learning From Heterogeneous Data Based on Social Interactions Over Graphs

Ali H. Sayed, Stefan Vlaski, Virginia Bordignon

This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions and arising from possibly different distributions. In the context of social learning ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Breaking the Curse of Dimensionality in Deep Neural Networks by Learning Invariant Representations

Leonardo Petrini

Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
EPFL2023
Afficher plus
MOOCs associés (14)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.