Publication

Rotation measure and synchrotron emission signatures in simulations of magnetized galactic discs

Yoan Rappaz
2022
Journal paper
Abstract

We analyse observational signatures of magnetic fields for simulations of a Milky Way-like disc with supernova-driven interstellar turbulence and self-consistent chemical processes. In particular, we post-process two simulations data sets of the SILCC Project for two initial amplitudes of the magnetic field, B-0 = 3 and 6 mu G, to study the evolution of Faraday rotation measures (RM) and synchrotron luminosity. For calculating the RM, three different models of the electron density n(e) are considered. A constant electron density, and two estimations based on the density of ionized species and the fraction of the total gas, respectively. Our results show that the RM profiles are extremely sensitive to the n(e) models, which assesses the importance of accurate electron distribution observations/estimations for the magnetic fields to be probed using Faraday RMs. As a second observable of the magnetic field, we estimate the synchrotron luminosity in the simulations using a semi-analytical cosmic ray model. We find that the synchrotron luminosity decreases over time, which is connected to the decay of magnetic energy in the simulations. The ratios between the magnetic, the cosmic ray, and the thermal energy density indicate that the assumption of equipartition does not hold for most regions of the ISM. In particular, for the ratio of the cosmic ray to the magnetic field energy the assumption of equipartition could lead to a wrong interpretation of the observed synchrotron emission.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (33)
Magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets.
Milky Way
The Milky Way is the galaxy that includes the Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλακτικὸς κύκλος (galaktikòs kýklos), meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within.
Magnetic moment
In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnets), permanent magnets, elementary particles (such as electrons), composite particles (such as protons and neutrons), various molecules, and many astronomical objects (such as many planets, some moons, stars, etc).
Show more
Related publications (46)

Iterative removal of sources to model the turbulent electromotive force

Abhijit Bhausaheb Bendre

We describe a novel method to compute the components of dynamo tensors from direct magnetohydrodynamic (MHD) simulations. Our method relies upon an extension and generalization of the standard H & ouml;gbom CLEAN algorithm widely used in radio astronomy to ...
Oxford Univ Press2024

The effect of pressure-anisotropy-driven kinetic instabilities on magnetic field amplification in galaxy clusters

Yoan Rappaz

Context. The intracluster medium (ICM) is the low-density diffuse gas that fills the space between galaxies within galaxy clusters. It is primarily composed of magnetized plasma, which reaches virial temperatures of up to 10(8) K, probably due to mergers o ...
Edp Sciences S A2024

A model for the infrared-radio correlation of main sequence galaxies at gigahertz frequencies and its variation with redshift and stellar mass

Mark Thomas Sargent

Context. The infrared-radio correlation (IRRC) of star-forming galaxies can be used to estimate their star formation rate (SFR) based on the radio continuum luminosity at MHz-GHz frequencies. For its practical application in future deep radio surveys, it i ...
Les Ulis Cedex A2023
Show more
Related MOOCs (32)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.