Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Nous nous intéressons à la reconstruction parcimonieuse d’images à l’aide du problème d’optimisation régularisé LASSO. Dans de nombreuses applications pratiques, les grandes dimensions des objets à reconstruire limitent, voire empêchent, l’utilisation des méthodes de résolution proximales classiques. C’est le cas par exemple en radioastronomie. Nous détaillons dans cet article le fonctionnement de l’algorithme Frank-Wolfe Polyatomique, spécialement développé pour résoudre le problème LASSO dans ces contextes exigeants. Nous démontrons sa supériorité par rapport aux méthodes proximales dans des situations en grande dimension avec des mesures de Fourier, lors de la résolution de problèmes simulés inspirés de la radio-interférométrie.