Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Inactivation kinetics of enterovirus by disinfection is often studied using a single laboratory strain of a given genotype. Environmental variants of enterovirus are genetically distinct from the corresponding laboratory strain, yet it is poorly understood how these genetic differences affect inactivation. Here we evaluated the inactivation kinetics of nine coxsackievirus B3 (CVB3), ten coxsackievirus B4 (CVB4), and two echovirus 11 (E11) variants by free chlorine and ultraviolet irradiation (UV). The inactivation kinetics by free chlorine were genotype- (i.e., susceptibility: CVB5 < CVB3 ≈ CVB4 < E11) and genogroup-dependent and exhibited up to 15-fold difference among the tested viruses. In contrast, only minor (up to 1.3-fold) differences were observed in the UV inactivation kinetics. The differences in variability between the two disinfectants could be rationalized by their respective inactivation mechanisms: inactivation by UV mainly depends on the genomic size and composition, which was similar for all viruses tested, whereas free chlorine targets the viral capsid protein, which exhibited critical differences between genogroups and genotypes. Finally, we integrated the observed kinetic variability into an expanded Chick-Watson model to estimate the overall inactivation of an enterovirus consortium. The results highlight that the distribution of inactivation rate constants and the abundance of each genotype are essential parameters to accurately predict the overall inactivation of an enterovirus population by free chlorine. We conclude that predictions based on inactivation data of a single variant or reference pathogen alone likely overestimate the true disinfection efficiency of free chlorine.
Tamar Kohn, Aleksandar Antanasijevic, Kiruthika Kumar, Shotaro Torii
Tamar Kohn, Anna Carratala Ripolles, Virginie Bachmann, Timothy R. Julian