Publication

Intrinsic area near the origin for self-similar growth-fragmentations and related random surfaces

2022
Journal paper
Abstract

We study the behaviour of a natural measure defined on the leaves of the genealogical tree of some branching processes, namely self-similar growth-fragmentation processes. Each particle, or cell, is attributed a positive mass that evolves in continuous time according to a positive self-similar Markov process and gives birth to children at negative jumps events. We are interested in the asymptotics of the mass of the ball centered at the root, as its radius decreases to 0. We obtain the almost sure behaviour of this mass when the Eve cell starts with a strictly positive size. This differs from the situation where the Eve cell grows indefinitely from size 0. In this case, we show that, when properly rescaled, the mass of the ball converges in distribution towards a non-degenerate random variable. We then derive bounds describing the almost sure behaviour of the rescaled mass. Those results are applied to certain random surfaces, exploiting the connection between growth-fragmentations and random planar maps obtained in (Probab. Theory Related Fields 172 (2018) 663???724). This allows us to extend a result of Le Gall (Ann. Inst. Henri Poincar?? Probab. Stat. 55 (2019) 237???313) on the volume of a free Brownian disk close to its boundary, to a larger family of stable disks. The upper bound of the mass of a typical ball in the Brownian map is refined, and we obtain a lower bound as well.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Random walk
In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock and the financial status of a gambler.
Wiener process
In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown.
Degenerate distribution
In mathematics, a degenerate distribution is, according to some, a probability distribution in a space with support only on a manifold of lower dimension, and according to others a distribution with support only at a single point. By the latter definition, it is a deterministic distribution and takes only a single value. Examples include a two-headed coin and rolling a die whose sides all show the same number. This distribution satisfies the definition of "random variable" even though it does not appear random in the everyday sense of the word; hence it is considered degenerate.
Show more
Related publications (32)

CONVERGENCE AND NONCONVERGENCE OF SCALED SELF-INTERACTING RANDOM WALKS TO BROWNIAN MOTION PERTURBED AT EXTREMA

Thomas Mountford

We use generalized Ray-Knight theorems, introduced by B. Toth in 1996, together with techniques developed for excited random walks as main tools for establishing positive and negative results concerning convergence of some classes of diffusively scaled sel ...
Cleveland2023

A Functional Perspective on Information Measures

Amedeo Roberto Esposito

Since the birth of Information Theory, researchers have defined and exploited various information measures, as well as endowed them with operational meanings. Some were born as a "solution to a problem", like Shannon's Entropy and Mutual Information. Other ...
EPFL2022

The n-term Approximation of Periodic Generalized Levy Processes

Michaël Unser, Julien René Pierre Fageot, John Paul Ward

In this paper, we study the compressibility of random processes and fields, called generalized Levy processes, that are solutions of stochastic differential equations driven by d-dimensional periodic Levy white noises. Our results are based on the estimati ...
SPRINGER/PLENUM PUBLISHERS2020
Show more
Related MOOCs (2)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.