Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Koopmans spectral functionals aim to describe simultaneously ground-state properties and charged excitations of atoms, molecules, nanostructures, and periodic crystals. This is achieved by augmenting standard density functionals with simple but physically motivated orbital-density-dependent corrections. These corrections act on a set of localized orbitals that, in periodic systems, resemble maximally localized Wannier functions. At variance with the original, direct supercell implementation (Phys. Rev. X 2018, 8, 021051), we discuss here (i) the complex but efficient formalism required for a periodic boundary code using explicit Brillouin zone sampling and (ii) the calculation of the screened Koopmans corrections with density functional perturbation theory. In addition to delivering improved scaling with system size, the present development makes the calculation of band structures with Koopmans functionals straightforward. The implementation in the open-source Quantum ESPRESSO distribution and the application to prototypical insulating and semiconducting systems are presented and discussed.
Nicola Marzari, Nicola Colonna, Edward Baxter Linscott, Ngoc Linh Nguyen, Giovanni Borghi, Riccardo De Gennaro, Andrea Ferretti