Publication

Effects of surface wettability on (001)-WO3 and (100)-WSe2: A spin-polarized DFT-MD study

Kevin Sivula, Rangsiman Ketkaew
2022
Journal paper
Abstract

An extensive understanding of WO3 and WSe2 bulk crystalline structures and explicit solvent effects on (001)-WO3 and (100)-WSe2 facets are essential for design of efficient (photo) electrocatalysts. The atomistic level understanding of both WO(3 )and WSe2 bulk solids and how water solvation processes occur on WO3 and WSe2 facets are nowadays characterized by a noticeable lack of knowledge. Herein, forefront Density Functional Theory-based molecular dynamics have been conducted for assessing the role of an explicit water environment in the characterization of solid surfaces. Water at the interface and H-bonds environment, as well as WO3 and WSe2 surface activity, will be described in terms of surface wettability and interfacial water dynamics, revealing the relevance of treating explicitly liquid water and its dynamics in assessing catalytic features. We provide pieces of evidence of the hydrophobic character shown by (001)-WO3 and (100)-WSe2 facets. A preferential in-plane hydration structure of the first water layer has been detected at both (001)-WO3 and (100)-WSe2 water interface, in which the electric dipole moment of water molecules is re-oriented in a sort of 2-dimensional H-bond network. Bulk property calculations of WO3 and WSe2 are also provided.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Implicit solvation
Implicit solvation (sometimes termed continuum solvation) is a method to represent solvent as a continuous medium instead of individual “explicit” solvent molecules, most often used in molecular dynamics simulations and in other applications of molecular mechanics. The method is often applied to estimate free energy of solute-solvent interactions in structural and chemical processes, such as folding or conformational transitions of proteins, DNA, RNA, and polysaccharides, association of biological macromolecules with ligands, or transport of drugs across biological membranes.
Water
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and nearly colorless chemical substance, and it is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a solvent). It is vital for all known forms of life, despite not providing food energy, or organic micronutrients. Its chemical formula, , indicates that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds.
Water model
In computational chemistry, a water model is used to simulate and thermodynamically calculate water clusters, liquid water, and aqueous solutions with explicit solvent. The models are determined from quantum mechanics, molecular mechanics, experimental results, and these combinations. To imitate a specific nature of molecules, many types of models have been developed. In general, these can be classified by the following three points; (i) the number of interaction points called site, (ii) whether the model is rigid or flexible, (iii) whether the model includes polarization effects.
Show more
Related publications (59)

Structure and dynamics of liquid water from ab initio simulations: adding Minnesota density functionals to Jacob's ladder

Ursula Röthlisberger, Justin Villard, Martin Peter Bircher

The accurate representation of the structural and dynamical properties of water is essential for simulating the unique behavior of this ubiquitous solvent. Here we assess the current status of describing liquid water using ab initio molecular dynamics, wit ...
Cambridge2024

Liposomes and Lipid Droplets Display a Reversal of Charge-Induced Hydration Asymmetry

Sylvie Roke, Nathan Dupertuis, Saranya Pullanchery Sankara Narayanan

The unique properties of water are critical for life. Water molecules have been reported to hydrate cations and anions asymmetrically in bulk water, being a key element in the balance of biochemical interactions. We show here that this behavior extends to ...
Washington2023

Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces

Philip Robin Loche

Using classical molecular dynamics simulations, we investigate the dielectric properties at interfaces of water with graphene, graphite, hexane, and water vapor. For graphite, we compare metallic and nonmetallic versions. At the vapor-liquid water and hexa ...
AIP Publishing2022
Show more
Related MOOCs (5)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.