Publication

Observation of SQUID-Like Behavior in Fiber Laser with Intra-Cavity Epsilon-Near-Zero Effect

Abstract

Establishing relations between fundamental effects in far-flung areas of physics is a subject of great interest in the current research. Realization of a novel photonic system akin to the radio-frequency superconducting quantum interference device (RF-SQUID), in a fiber laser cavity with epsilon-near-zero (ENZ) nanolayers as intra-cavity components is reported here. Emulating the RF-SQUID scheme, the photonic counterpart of the supercurrent, represented by the optical wave, circulates in the cavity, passing through effective optical potential barriers. Different ENZ wavelengths translate into distinct spectral outputs through the variation of cavity resonances, emulating the situation with a frequency-varying tank circuit in the RF-SQUID. Due to the presence of the ENZ element, the optical potential barrier is far lower for selected frequency components, granting them advantage in the gain-resource competition. The findings reported in this work provide a deeper insight into the ultrafast ENZ photonics, revealing a new path toward the design of nanophotonic on-chip devices with various operational functions, and offer a new approach to study superconducting and quantum-mechanical systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Fiber laser
A fiber laser (or fibre laser in Commonwealth English) is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing. Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing can also provide gain and thus serve as gain media for a fiber laser.
SQUID
A SQUID (superconducting quantum interference device) is a very sensitive magnetometer used to measure extremely weak magnetic fields, based on superconducting loops containing Josephson junctions. SQUIDs are sensitive enough to measure fields as low as 5×10−14 T with a few days of averaged measurements. Their noise levels are as low as 3 fT·Hz−. For comparison, a typical refrigerator magnet produces 0.01 tesla (10−2 T), and some processes in animals produce very small magnetic fields between 10−9 T and 10−6 T.
Photonic crystal
A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices (crystal structure) of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.
Show more
Related publications (58)

Dual chirped microcomb based parallel ranging at megapixel-line rates

Tobias Kippenberg, Junqiu Liu, Maxim Karpov, Anton Lukashchuk

Photonic integrated systems can be harnessed for fast and efficient optical telecommunication and metrology technologies. Here the authors develop a dual-soliton microcomb technique for massively parallel coherent laser ranging that requires only a single ...
NATURE PORTFOLIO2022

A photonic integrated continuous-travelling-wave parametric amplifier

Tobias Kippenberg, Rui Ning Wang, Nikolai Kuznetsov, Junqiu Liu, Jijun He

The ability to amplify optical signals is of pivotal importance across science and technology typically using rare-earth-doped fibres or gain media based on III-V semiconductors. A different physical process to amplify optical signals is to use the Kerr no ...
NATURE PORTFOLIO2022

Tunable wavelength-stabilized mode-locked thulium-doped fiber laser beyond 2000nm

Camille Sophie Brès, Moritz Bartnick, Gayathri Bharathan

We demonstrate operation of a tunable mode-locked thulium-doped fiber laser, based on a wavelength-selective chirped fiber Bragg grating (CFBG). By applying strain to the CFBG, we shift its reflection band and can thereby tune the emission-wavelength of th ...
SPIE-INT SOC OPTICAL ENGINEERING2022
Show more
Related MOOCs (4)
Cavity Quantum Optomechanics
Fundamentals of optomechanics. Basic principles, recent developments and applications.
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.