Publication

Clean air policies are key for successfully mitigating Arctic warming

Julia Schmale, Luca Pozzoli
2022
Journal paper
Abstract

A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air pollutants and greenhouse gases to assess climate and human health co-benefits of emissions reductions. Fossil fuel use is projected to rapidly decline in an increasingly sustainable world, resulting in far-reaching air quality benefits. Despite human health benefits, reductions in sulfur emissions in a more sustainable world could enhance Arctic warming by 0.8 °C in 2050 relative to the 1995–2014, thereby offsetting climate benefits of greenhouse gas reductions. Targeted and technically feasible emissions reduction opportunities exist for achieving simultaneous climate and human health co-benefits. It would be particularly beneficial to unlock a newly identified mitigation potential for carbon particulate matter, yielding Arctic climate benefits equivalent to those from carbon dioxide reductions by 2050.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Greenhouse gas emissions
Greenhouse gas emissions (abbreviated as GHG emissions) from human activities strengthen the greenhouse effect, contributing to climate change. Carbon dioxide (), from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the US, although the United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies.
Climate change
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Greenhouse gas inventory
Greenhouse gas inventories are emission inventories of greenhouse gas emissions that are developed for a variety of reasons. Scientists use inventories of natural and anthropogenic (human-caused) emissions as tools when developing atmospheric models. Policy makers use inventories to develop strategies and policies for emissions reductions and to track the progress of those policies. Regulatory agencies and corporations also rely on inventories to establish compliance records with allowable emission rates.
Show more
Related publications (210)

Impact of anthropogenic emission control in reducing future PM2.5 concentrations and the related oxidative potential across different regions of China

Athanasios Nenes, Yuan Yuan

Affected by both future anthropogenic emissions and climate change, future prediction of PM2.5 and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated ...
Elsevier2024

CO2 Capture and Management Strategies for Decarbonizing Secondary Aluminium Production

François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos, Réginald Germanier

The production of aluminium largely depends on the use of fossil fuels, resulting in the emission of significant amounts of greenhouse gases. As the aluminium industry is working towards decreasing its environmental burdens, the elimination of direct emiss ...
2024

Climate risk assessment of buildings: An analysis of operating emissions of commercial offices in Australia

Arianna Brambilla

Building climate risk assessment involves benchmarking a building's energy use intensity against decarbonisation pathways to mitigate the impacts on climate change. Various climate risk assessment tools and frameworks are used for commercial buildings in d ...
Elsevier Science Sa2024
Show more
Related MOOCs (4)
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Global Arctic
The Global Arctic MOOC introduces you the dynamics between global changes and changes in the Arctic. This course aims to highlight the effects of climate change in the Polar region. In turn, it will u
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.