Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We prove an identity relating the permanent of a rank 2 matrix and the determinants of its Hadamard powers. When viewed in the right way, the resulting formula looks strikingly similar to an identity of Carlitz and Levine, suggesting the possibility that these are actually special cases of some more general identity (or class of identities) connecting permanents and determinants. The proof combines some basic facts from the theory of symmetric functions with an application of a famous theorem of Binet and Cauchy in linear algebra.