Publication

Towards Robust Vision Transformer

Shaokai Ye, Yuan He
2022
Conference paper
Abstract

Recent advances on Vision Transformer (ViT) and its improved variants have shown that self-attention-based networks surpass traditional Convolutional Neural Networks (CNNs) in most vision tasks. However, existing ViTs focus on the standard accuracy and computation cost, lacking the investigation of the intrinsic influence on model robustness and generalization. In this work, we conduct systematic evaluation on components of ViTs in terms of their impact on robustness to adversarial examples, common corruptions and distribution shifts. We find some components can be harmful to robustness. By leveraging robust components as building blocks of ViTs, we propose Robust Vision Transformer (RVT), which is a new vision transformer and has superior performance with strong robustness. Inspired by the findings during the evaluation, we further propose two new plug-and-play techniques called position-aware attention scaling and patch-wise augmentation to augment our RVT, which we abbreviate as RVT*. The experimental results of RVT on ImageNet and six robustness benchmarks demonstrate its advanced robustness and generalization ability compared with previous ViTs and state-of-the-art CNNs. Furthermore, RVT-S* achieves Top-1 rank on multiple robustness leaderboards including ImageNet-C, ImageNet-Sketch and ImageNet-R.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (28)
Artificial neural network
Artificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
Stable distribution
In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it. Of the four parameters defining the family, most attention has been focused on the stability parameter, (see panel).
Generative adversarial network
A generative adversarial network (GAN) is a class of machine learning framework and a prominent framework for approaching generative AI. The concept was initially developed by Ian Goodfellow and his colleagues in June 2014. In a GAN, two neural networks contest with each other in the form of a zero-sum game, where one agent's gain is another agent's loss. Given a training set, this technique learns to generate new data with the same statistics as the training set.
Show more
Related publications (36)

Robust machine learning for neuroscientific inference

Steffen Schneider

Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
EPFL2024

Generalization of Scaled Deep ResNets in the Mean-Field Regime

Volkan Cevher, Grigorios Chrysos, Fanghui Liu

Despite the widespread empirical success of ResNet, the generalization properties of deep ResNet are rarely explored beyond the lazy training regime. In this work, we investigate scaled ResNet in the limit of infinitely deep and wide neural networks, of wh ...
2024

Rapid Network Adaptation: Learning to Adapt Neural Networks Using Test-Time Feedback

Shuqing Teresa Yeo, Amir Roshan Zamir, Oguzhan Fatih Kar, Zahra Sodagar

We propose a method for adapting neural networks to distribution shifts at test-time. In contrast to training-time robustness mechanisms that attempt to anticipate and counter the shift, we create a closed-loop system and make use of test-time feedback sig ...
Ieee Computer Soc2023
Show more
Related MOOCs (4)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Show more