Publication

Preparation of Single-Somite Explants from Zebrafish Embryos

Abstract

The body axis of vertebrate embryos is periodically subdivided into 3D multicellular units called somites. While genetic oscillations and molecular prepatterns determine the initial length-scale of somites, mechanical processes have been implicated in setting their final size and shape. To better understand the intrinsic material properties of somites, a method is developed to culture single-somite explant from zebrafish embryos. Single somites are isolated by first removing the skin of embryos, followed by yolk removal and sequential excision of neighboring tissues. Using transgenic embryos, the distribution of various sub-cellular structures can be observed by fluorescent time-lapse microscopy. Dynamics of explanted somites can be followed for several hours, thus providing an experimental framework for studying tissue-scale shape changes at single-cell resolution. This approach enables direct mechanical manipulation of somites, allowing for dissection of the material properties of the tissue. Finally, the technique outlined here can be readily extended for explanting other tissues such as the notochord, neural plate, and lateral plate mesoderm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.