Publication

U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search

Abstract

Optimizing resource utilization in target platforms is key to achieving high performance during DNN inference. While optimizations have been proposed for inference latency, memory footprint, and energy consumption, prior hardware-aware neural architecture search (NAS) methods have omitted resource utilization, preventing DNNs to take full advantage of the target inference platforms. Modeling resource utilization efficiently and accurately is challenging, especially for widely-used array-based inference accelerators such as Google TPU. In this work, we propose a novel hardware-aware NAS framework that does not only optimize for task accuracy and inference latency, but also for resource utilization. We also propose and validate a new computational model for resource utilization in inference accelerators. By using the proposed NAS framework and the proposed resource utilization model, we achieve 2.8 - 4x speedup for DNN inference compared to prior hardware-aware NAS methods while attaining similar or improved accuracy in image classification on CIFAR-10 and Imagenet-100 datasets. (Source code is available at https://github.com/yuezuegu/LBoostNAS).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Deep learning
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Tensor Processing Unit
Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. Google began using TPUs internally in 2015, and in 2018 made them available for third party use, both as part of its cloud infrastructure and by offering a smaller version of the chip for sale. Compared to a graphics processing unit, TPUs are designed for a high volume of low precision computation (e.g.
ImageNet
The ImageNet project is a large visual database designed for use in visual object recognition software research. More than 14 million images have been hand-annotated by the project to indicate what objects are pictured and in at least one million of the images, bounding boxes are also provided. ImageNet contains more than 20,000 categories, with a typical category, such as "balloon" or "strawberry", consisting of several hundred images.
Show more
Related publications (35)

Deep Learning Generalization with Limited and Noisy Labels

Mahsa Forouzesh

Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
EPFL2023

Estimating and Improving the Robustness of Attributions in Text

Ádám Dániel Ivánkay

End-to-end learning methods like deep neural networks have been the driving force in the remarkable progress of machine learning in recent years. However, despite their success, the deployment process of such networks in safety-critical use cases, such as ...
EPFL2023

STREAMING TENSOR TRAIN APPROXIMATION

Daniel Kressner

Tensor trains are a versatile tool to compress and work with high-dimensional data and functions. In this work we introduce the streaming tensor train approximation (STTA), a new class of algorithms for approximating a given tensor ' in the tensor train fo ...
Philadelphia2023
Show more