Publication

Protein Dielectrophoresis with Gradient Array of Conductive Electrodes Sheds New Light on Empirical Theory

Olivier Martin, Siarhei Zavatski
2023
Journal paper
Abstract

Dielectrophoresis (DEP) is a versatile tool for the precise microscale manipulation of a broad range of substances. To unleash the full potential of DEP for the manipulation of complex molecular-sized particulates such as proteins requires the development of appropriate theoretical models and their comprehensive experimental verification. Here, we construct an original DEP platform and test the Holzel-Pethig empirical model for protein DEP. Three different proteins are studied: lysozyme, BSA, and lactoferrin. Their molecular Clausius-Mossotti function is obtained by detecting their trapping event via the measurement of the fluorescence intensity to identify the minimum electric field gradient required to overcome dispersive forces. We observe a significant discrepancy with published theoretical data and, after a very careful analysis to rule out experimental errors, conclude that more sophisticated theoretical models are required for the response of molecular entities in DEP fields. The developed experimental platform, which includes arrays of sawtooth metal electrode pairs with varying gaps and produces variations of the electric field gradient, provides a versatile tool that can broaden the utilization of DEP for molecular entities.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Electric field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, one of the four fundamental interactions (also called forces) of nature.
Cathode-ray tube
A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms (oscilloscope), pictures (television set, computer monitor), radar targets, or other phenomena. A CRT on a television set is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer.
Electrochemical gradient
An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: The chemical gradient, or difference in solute concentration across a membrane. The electrical gradient, or difference in charge across a membrane. When there are unequal concentrations of an ion across a permeable membrane, the ion will move across the membrane from the area of higher concentration to the area of lower concentration through simple diffusion.
Show more
Related publications (33)

Electrically tunable dipolar interactions between layer-hybridized excitons

Andras Kis, Fedele Tagarelli, Edoardo Lopriore

Transition-metal dichalcogenide bilayers exhibit a rich exciton landscape including layer-hybridized excitons, i.e. excitons which are of partly intra- and interlayer nature. In this work, we study hybrid exciton-exciton interactions in naturally stacked W ...
ROYAL SOC CHEMISTRY2023

Nonlinear electro-mechanical coupling and thermally stimulated currents in relaxor ferroelectrics

Lukas Riemer

In this work, the emergence of polarization and electro-mechanical coupling in Pb(Mg1/3Nb2/3)O3 and Pb(Mg1/3Nb2/3)O3 – PbTiO3 was investigated by means of thermally stimulated current, and nonlinear dielectric and electro-mechanical measurements. The pre ...
EPFL2022

Three-dimensional electrodes for dielectrophoretic applications

Kevin Keim

This thesis reports the use of metal-coated three-dimensional SU-8 electrodes for dielectrophoretic bio sensing and particle manipulation applications. Placing free standing three-dimensional electrodes in microfluidic channels, electric fields can be appl ...
EPFL2020
Show more
Related MOOCs (8)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.