Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Snow significantly impacts the seasonal growth of Arctic sea ice due to its thermally insulating properties. Various measurements and parametrizations of thermal properties exist, but an assessment of the entire seasonal evolution of thermal conductivity and snow resistance is hitherto lacking. Using the comprehensive snow data set from the MOSAiC expedition, we have evaluated for the first time the seasonal evolution of the snow's thermal conductivity and thermal resistance on different ice ages (leads, first and second-year ice) and topographic features (ridges). Combining different measurement parametrizations and assessing the robustness against spatial variability, we infer and quantify a hitherto undocumented feature in the seasonal dynamics of snow on sea ice. We observe an increase in thermal conductivity up to March and a decrease thereafter, both on first-year and second-year ice before the melt period started. Since a similar non-monotonic behaviour is extracted for the snow depth, the thermal resistance of snow on level sea ice remains approximately constant with a value of 515 ± 404 m2 K W−1 on first-year ice and 660 ± 475m2 K W−1 on second-year ice. We found approximately three times higher thermal resistance on ridges (1411 ± 910 m2 K W−1). Our findings are that the micropenetrometer-derived thermal conductivities give accurate values, and confirm that spatial variability of the snow cover is vertically and horizontally large. The implications of our findings for Arctic sea ice are discussed.
Julia Schmale, Ivo Fabio Beck, Benjamin Jérémy Laurent Heutte, Jakob Boyd Pernov, Hélène Paule Angot, Lubna Dada, Federico Bianchi