Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The real-time, and accurate inference of model parameters is of great importance in many scientific and engineering disciplines that use computational models (such as a digital twin) for the analysis and prediction of complex physical processes. However, fast and accurate inference for processes of complex systems cannot easily be achieved in real-time with state-of-the-art methods under noisy real-world conditions with the requirement of a real-time response. The primary reason is that the inference of model parameters with traditional techniques based on optimization or sampling often suffers from computational and statistical challenges, resulting in a trade-off between accuracy and deployment time. In this paper, we propose a novel framework for inference of model parameters based on reinforcement learning. The proposed methodology is demonstrated and evaluated on two different physics-based models of turbofan engines. The experimental results demonstrate that the proposed methodology outperforms all other tested methods in terms of speed and robustness, with high inference accuracy.
, , ,
Francesco Mondada, Alexandre Massoud Alahi, Vaios Papaspyros