Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Displaced communication, whereby individuals communicate regarding a subject that is not immediately present (spatially or temporally), is one of the key features of human language. It also occurs in a few animal species, most notably the honeybee, where the waggle dance is used to communicate the location and quality of a patch of flowers. However, it is difficult to study how it emerged given the paucity of species displaying this capacity and the fact that it often occurs via complex multimodal signals. To address this issue, we developed a novel paradigm in which we conducted experimental evolution with foraging agents endowed with neural networks that regulate their movement and the production of signals. Displaced communication readily evolved but, surprisingly, agents did not use signal amplitude to convey information on food location. Instead, they used signal onset-delay and duration-based mode of communication, which depends on the motion of the agent within a communication area. When agents were experimentally prevented from using these modes of communication, they evolved to use signal amplitude instead. Interestingly, this mode of communication was more efficient and led to higher performance. Subsequent controlled experiments suggested that this more efficient mode of communication failed to evolve because it took more generations to emerge than communication grounded on the onset-delay and length of signaling. These results reveal that displaced communication is likely to initially evolve from non-communicative behavioral cues providing incidental information with evolution later leading to more efficient communication systems through a ritualization process.
Anne-Marie Kermarrec, Rafael Pereira Pires, Akash Balasaheb Dhasade, Rishi Sharma, Milos Vujasinovic, Jeffrey Wigger
Colin Neil Jones, Yuning Jiang, Yingzhao Lian, Xinliang Dai