Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Dielectric elastomer actuators (DEAs) generate motion resembling natural muscles in reliability, adaptability, elongation, and frequency of operation. They are highly attractive in implantable soft robots or artificial organs. However, many applications of such devices are hindered by the high driving voltage required for operation, which exceeds the safety threshold for the human body. Although the driving voltage can be reduced by decreasing the thickness and the elastic modulus, soft materials are prone to electromechanical instability (EMI), which causes dielectric breakdown. The elastomers made by cross-linking bottlebrush polymers are promising for achieving DEAs that suppress EMI. In previous work, they were chemically cross-linked using an in situ free-radical UV-induced polymerization, which is oxygen-sensitive and does not allow the formation of thin films. Therefore, the respective actuators were operated at voltages above 4000 V. Herein, macromonomers that can be polymerized by ring-opening metathesis polymerization and subsequently cross-linked via a UV-induced thiol-ene click reaction are developed. They allow us to fast cross-link defect-free thin films with a thickness below 100 mu m. The dielectric films give up to 12% lateral actuation at 1000 V and survive more than 10,000 cycles at frequencies up to 10 Hz. The easy and efficient preparation approach of the defect-free thin films under air provides easy accessibility to bottlebrush polymeric materials for future research. Additionally, the desired properties, actuation under low voltage, and long lifetime revealed the potential of the developed materials in soft robotic implantable devices. Furthermore, the C-C double bonds in the polymer backbone allow for chemical modification with polar groups and increase the materials' dielectric permittivity to a value of 5.5, which is the highest value of dielectric permittivity for a cross-linked bottlebrush polymer
Danick Briand, Luis Guillermo Villanueva Torrijo, Morgan Mc Kay Monroe
Holger Frauenrath, Yauhen Sheima