Publication

Watertable fluctuations in coastal unconfined aquifers with a sloping sea boundary: Vertical flow and dynamic effective porosity effects

David Andrew Barry, Zhaoyang Luo
2023
Journal paper
Abstract

Interactions between the tide and sloping sea boundary make watertable fluctuations in coastal unconfined aquifers complicated. Based on a perturbation method, we derived a new analytical solution to predict watertable fluctuations for coastal unconfined aquifers with a sloping sea boundary. Following validation with a numerical model, the analytical solution was used to explore the effects of the vertical flow (in the saturated zone) and dynamic effective porosity on watertable fluctuations. Results show that the new analytical solution accurately predicts watertable fluctuations for coastal unconfined aquifers with a sloping sea boundary. Compared with sand coastal unconfined aquifers, both vertical flow and dynamic effective porosity effects on watertable fluctuations are more pronounced for loam coastal unconfined aquifers. Vertical flow has a minor influence on the fluctuation amplitude while it significantly decreases the phase lag of the watertable fluctuation at a given location. In contrast to vertical flow, accounting for the dynamic effective porosity not only decreases the phase lag, but also significantly amplifies the fluctuation amplitude for a given location, which enables watertable wave propagation further inland. Increasing the beach slope weakens the effects of the vertical flow and dynamic effective porosity on watertable fluctuations. Furthermore, including either the vertical flow or dynamic effective porosity effects leads to a lower watertable overheight. These results highlight the importance of vertical flow and dynamic effective porosity effects in models of watertable fluctuations.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (18)
Groundwater
Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table.
Soil salinity control
Soil salinity control refers to controlling the process and progress of soil salinity to prevent soil degradation by salination and reclamation of already salty (saline) soils. Soil reclamation is also called soil improvement, rehabilitation, remediation, recuperation, or amelioration. The primary man-made cause of salinization is irrigation. River water or groundwater used in irrigation contains salts, which remain in the soil after the water has evaporated.
Floridan aquifer
The Floridan aquifer system, composed of the Upper and Lower Floridan aquifers, is a sequence of Paleogene carbonate rock which spans an area of about in the southeastern United States. It underlies the entire state of Florida and parts of Alabama, Georgia, Mississippi, and South Carolina. The Floridan aquifer system is one of the world's most productive aquifers and supplies drinking water for nearly 10 million people.
Show more