Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Millions of quasar spectra will be collected by the Dark Energy Spectroscopic Instrument (DESI), leading to a fourfold increase in the number of known quasars. High-accuracy quasar classification is essential to tighten constraints on cosmological parameters measured at the highest redshifts DESI observes (z > 2.0). We present spectral templates for identification and redshift estimation of quasars in the DESI Year 1 data release. The quasar templates are comprised of two quasar eigenspectra sets, trained on spectra from the Sloan Digital Sky Survey. The sets are specialized to reconstruct quasar spectral variation observed over separate yet overlapping redshift ranges and, together, are capable of identifying DESI quasars from 0.05 < z < 7.0. The new quasar templates show significant improvement over the previous DESI quasar templates regarding catastrophic failure rates, redshift precision and accuracy, quasar completeness, and the contamination fraction in the final quasar sample.
Frédéric Courbin, Georges Meylan, Gianluca Castignani, Maurizio Martinelli, Malte Tewes, Slobodan Ilic, Alessandro Pezzotta, Yi Wang, Richard Massey, Fabio Finelli, Marcello Farina
Frédéric Courbin, Martin Raoul Robert Millon
, , ,