Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Many feedforward neural networks (NNs) generate continuous and piecewise-linear (CPWL) mappings. Specifically, they partition the input domain into regions on which the mapping is affine. The number of these so-called linear regions offers a natural metric to characterize the expressiveness of CPWL NNs. The precise determination of this quantity is often out of reach in practice, and bounds have been proposed for specific architectures, including for ReLU and Maxout NNs. In this work, we generalize these bounds to NNs with arbitrary and possibly multivariate CPWL activation functions. We first provide upper and lower bounds on the maximal number of linear regions of a CPWL NN given its depth, width, and the number of linear regions of its activation functions. Our results rely on the combinatorial structure of convex partitions and confirm the distinctive role of depth which, on its own, is able to exponentially increase the number of regions. We then introduce a complementary stochastic framework to estimate the average number of linear regions produced by a CPWL NN. Under reasonable assumptions, the expected density of linear regions along any 1D path is bounded by the product of depth, width, and a measure of activation complexity (up to a scaling factor). This yields an identical role to the three sources of expressiveness: no exponential growth with depth is observed anymore.
The capabilities of deep learning systems have advanced much faster than our ability to understand them. Whilst the gains from deep neural networks (DNNs) are significant, they are accompanied by a growing risk and gravity of a bad outcome. This is tr ...
, , ,