Publication

ACTOR: Action-Guided Kernel Fuzzing

Mathias Josef Payer
2023
Conference paper
Abstract

Fuzzing reliably and efficiently finds bugs in software, including operating system kernels. In general, higher code coverage leads to the discovery of more bugs. This is why most existing kernel fuzzers adopt strategies to generate a series of inputs that attempt to greedily maximize the amount of code that they exercise. However, simply executing code may not be sufficient to reveal bugs that require specific sequences of actions. Synthesizing inputs to trigger such bugs depends on two aspects: (i) the actions the executed code takes, and (ii) the order in which those actions are taken. An action is a high-level operation, such as a heap allocation, that is performed by the executed code and has a specific semantic meaning.|ACTOR, our action-guided kernel fuzzing framework, deviates from traditional methods. Instead of focusing on code coverage optimization, our approach generates fuzzer programs (inputs) that leverage our understanding of triggered actions and their temporal relationships. Specifically, we first capture actions that potentially operate on shared data structures at different times. Then, we synthesize programs using those actions as building blocks, guided by bug templates expressed in our domain-specific language.|We evaluated ACTOR on four different versions of the Linux kernel, including two well-tested and frequently updated long-term (5.4.206, 5.10.131) versions, a stable (5.19), and the latest (6.2-rc5) release. Our evaluation revealed a total of 41 previously unknown bugs, of which 9 have already been fixed. Interestingly, 15 (36.59%) of them were discovered in less than a day.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Executable
In computing, executable code, an executable file, or an executable program, sometimes simply referred to as an executable or binary, causes a computer "to perform indicated tasks according to encoded instructions", as opposed to a data file that must be interpreted (parsed) by a program to be meaningful. The exact interpretation depends upon the use. "Instructions" is traditionally taken to mean machine code instructions for a physical CPU. In some contexts, a file containing scripting instructions (such as bytecode) may also be considered executable.
Self-modifying code
In computer science, self-modifying code (SMC or SMoC) is code that alters its own instructions while it is executing – usually to reduce the instruction path length and improve performance or simply to reduce otherwise repetitively similar code, thus simplifying maintenance. The term is usually only applied to code where the self-modification is intentional, not in situations where code accidentally modifies itself due to an error such as a buffer overflow.
Executable compression
Executable compression is any means of compressing an executable file and combining the compressed data with decompression code into a single executable. When this compressed executable is executed, the decompression code recreates the original code from the compressed code before executing it. In most cases this happens transparently so the compressed executable can be used in exactly the same way as the original. Executable compressors are often referred to as "runtime packers", "software packers", "software protectors" (or even "polymorphic packers" and "obfuscating tools").
Show more
Related publications (39)

Secure Interface Design Leveraging Hardware/Software Support

Atri Bhattacharyya

Computer systems rely heavily on abstraction to manage the exponential growth of complexity across hardware and software. Due to practical considerations of compatibility between components of these complex systems across generations, developers have favou ...
EPFL2024

An Open-Hardware Coarse-Grained Reconfigurable Array for Edge Computing

David Atienza Alonso, Giovanni Ansaloni, José Angel Miranda Calero, Rubén Rodríguez Álvarez, Juan Pablo Sapriza Araujo, Benoît Walter Denkinger, Ruben Rodriguez

In this work, we propose an open-hardware low-power coarse-grained reconfigurable array connected to a lightweight microcontroller and enclosed in an application mapping framework. The latter provides complete support to configure kernels in the reconfigur ...
2023

Thwarting Malicious Adversaries in Homomorphic Encryption Pipelines

Sylvain Chatel

Homomorphic Encryption (HE) enables computations to be executed directly on encrypted data. As such, it is an auspicious solution for protecting the confidentiality of sensitive data without impeding its usability. However, HE does not provide any guarante ...
EPFL2023
Show more
Related MOOCs (24)
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.