Publication

Transition to chaos in extended systems and their quantum impurity models

Camille Didier Georges Aron
2024
Journal paper
Abstract

Chaos sets a fundamental limit to quantum-information processing schemes. We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices. We consider an extended version of the Tavis-Cummings model on a finite chain. By studying level-spacing statistics, adjacent gap ratios, and spectral form factors, we observe the transition from integrability to chaos as the hopping between the Tavis-Cummings sites is increased above a finite value. The results are obtained by means of exact numerical diagonalization which becomes notoriously hard for extended lattice geometries. In an attempt to circumvent these difficulties, we identify a minimal single-site quantum impurity model that successfully captures the spectral properties of the lattice model. This approach is intended to be adaptable to other lattice models with large local Hilbert spaces.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.